
ECE 604, Lecture 15

October 23, 2018

In this lecture, we will cover the following topics:

• Drude-Lorentz Sommerfeld Model

Additional Reading:

• Sections 13.2, 13.3 of Ramo, Whinnery, and Van Duzer.

Printed on October 26, 2018 at 11 : 54: W.C. Chew and D. Jiao.
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1 Drude-Lorentz Sommerfeld Model

In the previous lecture, we have seen how loss can be introduced by having a
conduction current flowing in a medium. Now that we have learnt the versatility
of the frequency domain method, other loss mechanism can be easily introduced
with the frequency-domain method.

First let us look at the simple constitutive relation for the static case where

D = ε0E + P (1.1)

We have a simple model where

P = ε0χeE (1.2)

where χe is the electric susceptibility. When used in the generalized Ampere’s
law, P, the polarization density, plays an important role for the flow of the
displacement current through space. We can think of displacement current flow
as capacitive coupling of polarization current flow through space. Namely, for
a source-free medium,

∇×H =
∂D

∂t
= ε0

∂E

∂t
+
∂P

∂t
(1.3)

Figure 1:

For example, for a sinusoidal oscillating field, the dipoles will flip back and forth
giving rise to flow of displacement current just as how time-harmonic electric
current can flow through a capacitor.

The relationships between P and E can be written more generally as

P = ε0χχχe(E) (1.4)

where the relationship can appear in many different forms. For nonlinear me-
dia, the relationship can be non-linear. Eq (1.2), however, represents a linear
medium. This linear relationship can be generalized to that of a linear time-
invariant system, or that at any given r,

P(r, t) = ε0χe(r, t) ~E(r, t) (1.5)
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where ~ here implies a convolution. In the frequency domain or the Fourier
space, the above relationship becomes

P(r, ω) = ε0χe(r, ω)E(r, ω), (1.6)

D(r, ω) = ε0(1 + χe(r, ω))E(r, ω) = ε(r, ω)E(r, ω) (1.7)

where ε(r, ω) = ε0(1 + χe(r, ω)) at any point r in space. There is a rich variety
of ways at which χe(ω) can manifest itself.

To see how χe(ω) can be derived, we will study the Drude-Lorentz-Sommerf-
eld model. This is usually just known as the Drude model or the Lorentz model
in many textbooks although Sommerfeld also contributed to it. This model can
be unified in one equation as shall be shown.

We can start with a simple electron driven by an electric field E. If the
electron is free to move, then the force acting on it is −eE where e is the charge
of the electron. Then from Newton’s law, assuming a one dimensional case, it
follows that

me
d2x

dt2
= −eE (1.8)

assuming that E points in the x-direction, and we neglect the vector nature of
the electric field. Writing the above in the frequency domain, one gets

−ω2mex = −eE (1.9)

From this, we have

x =
e

ω2me
E (1.10)

This for instance, can happen in a plasma medium where the atoms are ionized,
and the electrons are free to roam. Hence, we assume that the positive ions are
more massive, and move very little compared to the electrons when an electric
field is applied.

Figure 2:
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The dipole moment formed by the displaced electron away from the ion is

p = −ex = − e2

ω2me
E (1.11)

for one electron. When there are N electrons per unit volume, the dipole density
is given by

P = Np = − Ne2

ω2me
E (1.12)

In general,

P = − Ne2

ω2me
E = −ωp

2ε0
ω2

E (1.13)

where we have defined ωp
2 = Ne2/(meε0). Then,

D = ε0E + P = ε0

(
1− ωp

2

ω2

)
E (1.14)

In this manner, we see that the effective permittivity is

ε = ε0

(
1− ωp

2

ω2

)
(1.15)

This gives the interesting result that in the frequency domain ε < 0 if

ω < ωp =
√
N/(meε0)e

Here, ωp is the plasma frequency. Since k = ω
√
µε, if ε is negative, k becomes

pure imaginary, and a wave such as e−jkz decays exponentially. In other words,
the wave cannot propagate through such a medium.

The above model can be generalized to the case where the electron is bound
to the ion, and the ion provides a restoring force, namely,

me
d2x

dt2
+ κx = −eE (1.16)
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Figure 3:

We assume that ion provide a restoring force just like Hooke’s law. Again,
(1.16) can be solved easily in the frequency domain, and yields that

x =
e

(ω2me − κ)
E ==

e

(ω2 − ω0
2)me

E (1.17)

where we define ω0
2me = κ. Equation (1.16) can be generalized to the case

when frictional or damping forces are involved, or that

me
d2x

dt2
+meΓ

dx

dt
+ κx = −eE (1.18)

The second term is a force that is proportional to the velocity dx/dt of the
electron. This is the hall-mark of a frictional force. Also, Γ has the unit of
frequency, and for plasma, and conductor, it can be regarded as a collision
frequency.

Solving the above in the frequency domain, one gets

x =
e

(ω2 − jωΓ− ω0
2)me

E (1.19)

Following the same procedure in arriving at (1.12), we get

P =
−Ne2

(ω2 − jωΓ− ω0
2)me

E (1.20)

In this, one can identify that

χe(ω) =
−Ne2

(ω2 − jωΓ− ω0
2)meε0

= − ωp
2

ω2 − jωΓ− ω0
2

(1.21)
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where we have used ωp as defined before. Function with the above frequency
dependence is also called a Lorentzian function. It is the hallmark of a damped
harmonic oscillator.

If Γ = 0 then when ω = ω0, one sees a resonance peak exhibited by the DLS
model. When Γ is small, but ω ≈ ω0, then

χe ≈ +
ωp

2

jωΓ
= −j ωp

2

ωΓ
(1.22)

χe exhibits a large negative imaginary part, the hallmark of a dissipative medium.
The DLS model is a wonderful model because it can capture phenomeno-

logically the essence of the physics of many electromagnetic media. It can
capture the resonance behavior of an atom absorbing energy from light exci-
tation. When the light wave comes in at the correct frequency, it will excite
electronic transition within an atom which can be approximately model as a
resonance behavior. This electronic resonances will be radiationally damped,
and the damped oscillation can be modeled by Γ 6= 0.

Moreover, the above model can also be used to model molecular vibrations.
In this case, the mass of the electron will be replaced by the mass of the atom
involved. The damping of the molecular vibration is caused by the hindered
vibration of the molecule due to interaction with other molecules.

In the case of plasma, Γ 6= 0 can represents the collision frequency between
the free electrons and the ions, giving rise to loss. In the case of a conductor,
Γ represents the collision frequency between the conduction electrons in the
conduction band with the lattice of the material.1 Also, if there is no restoring
force so that ω0 = 0, and for sufficiently low frequency, from (1.21)

χe = −j ωp
2

ωΓ
(1.23)

and

ε = ε0(1 + χe) = ε0

(
1− j ωp

2

ωΓ

)
(1.24)

We recall that for a conductive medium, we define a complex permittivity to be

ε = ε0

(
1− j σ

ωε0

)
(1.25)

Comparing (1.24) and (1.25), we see that

σ = ε0
ωp

2

Γ
(1.26)

Because the DLS is so powerful, it can be used to explain a wide range of
phenomena from very low frequency to optical frequency.

1It is to be noted that electron has a different effective mass in a crystal lattice, and hence,
the electron mass has to be changed accordingly in the DLS model.
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The fact that ε < 0 can be used to explain many phenomena. The ionosphere
is essentially a plasma medium described by

ε = ε0

(
1− ωp

2

ω2

)
(1.27)

Radio wave or microwave can only penetrate through this ionosphere when
ω > ωp, so that ε > 0.

Also, the Lorentz function is great for data fitting, as many experimentally
observed resonances have finite Q and a line width. The Lorentz function models
that well. If multiple resonances occur in a medium or an atom, then multi-
species DLS model can be used. It is now clear that all media have to be
frequency dispersive because of the finite mass of the electron and the inertial it
has. In other words, there is no instantaneous response in a dielectric medium
due to the finiteness of the electron mass.

Even at optical frequency, many metals, which has a sea of freely moving
electrons in the conduction band, can be modeled approximately as a plasma.
A metal consists of a sea of electrons in the conduction band which are not
tightly bound to the ions or the lattice. Also, in optics, the inertial force due to
the finiteness of the electron mass (in this case effective mass) can be sizeable
compared to other forces. Then, ω0 � ω in (1.21), and if Γ is small, χe(ω)
resembles that of a plasma, and ε of a metal can be negative. When a plasmonic
nanoparticle made of gold is excited by light, its response is given by (see Take
Home Exam 1)

Φr = E0
a3 cos θ

r2
εs − ε0
εs + 2ε0

(1.28)

when εs = −2ε0, Φr →∞. Therefore, when light interacts with such a particle,
it can sparkle brighter than normal. This reminds us of the saying “All that
glitters is not gold!” even though this saying has a different intended meaning.

Ancient Romans apparently knew about the potent effect of using gold and
silver nanoparticles to enhance the reflection of light. These nanoparticles were
impregnated in the glass or lacquer ware. By impregnating these particles in
different media, the color of light will sparkle at different frequencies, and hence,
the color of the glass emulsion can be changed (see website below).

https://www.smithsonianmag.com/history/this-1600-year-old-goblet-shows-
that-the-romans-were-nanotechnology-pioneers-787224/
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Figure 4: Courtesy of Smithsonian.com.
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